Smith Normal Form of a Multivariate Matrix Associated with Partitions (preliminary version)

نویسنده

  • Richard P. Stanley
چکیده

E. R. Berlekamp [1][2] raised a question concerning the entries of certain matrices of determinant 1. (Originally Berlekamp was interested only in the entries modulo 2.) Carlitz, Roselle, and Scoville [3] gave a combinatorial interpretation of the entries (over the integers, not just modulo 2) in terms of lattice paths. Here we will generalize the result of Carlitz, Roselle, and Scoville in two ways: (a) we will refine the matrix entries so that they are multivariate polynomials, and (b) we compute not just the determinant of these matrices, but more strongly their Smith normal form (SNF). A priori our matrices need not have a Smith normal form since they are not defined over a principal ideal domain, but the existence of SNF will follow from its explicit computation. A special case is a determinant of q-Catalan numbers. It will be more convenient for us to state our results in terms of partitions rather than lattice paths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multivariate Determinant Associated with Partitions (preliminary version)

E. R. Berlekamp [1][2] raised a question concerning the entries of certain matrices of determinant 1. (Originally Berlekamp was interested only in the entries modulo 2.) Carlitz, Roselle, and Scoville [3] gave a combinatorial interpretation of the entries (over the integers, not just modulo 2) in terms of lattice paths. Here we will generalize the result of Calitz, Roselle, and Scoville in two ...

متن کامل

Smith Normal Form of a Multivariate Matrix Associated with Partitions

Abstract. Considering a question of E. R. Berlekamp, Carlitz, Roselle, and Scoville gave a combinatorial interpretation of the entries of certain matrices of determinant 1 in terms of lattice paths. Here we generalize this result by refining the matrix entries to be multivariate polynomials, and by determining not only the determinant but also the Smith normal form of these matrices. A priori t...

متن کامل

Kasteleyn Cokernels

We consider Kasteleyn and Kasteleyn-Percus matrices, which arise in enumerating matchings of planar graphs, up to matrix operations on their rows and columns. If such a matrix is defined over a principal ideal domain, this is equivalent to considering its Smith normal form or its cokernel. Many variations of the enumeration methods result in equivalent matrices. In particular, Gessel-Viennot ma...

متن کامل

Algebraic Algorithms

This is a preliminary version of a Chapter on Algebraic Algorithms in the upcoming Computing Handbook Set Computer Science (Volume I), CRCPress/Taylor and Francis Group. Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, exponential and differential polynomials, rational functions, algebraic sets, curves and surfaces. In this vast area, manipulation wit...

متن کامل

A Note to Hermite and Smith Normal Form Computation

Hermite normal form and Smith normal form are canonic forms of integral matrices with respect to congruence produced by multiplication with right unimodular matrix resp. by multiplication with left and right unimodular matrix simultaneously. This lower-diagonal resp. diagonal form has many applications in various elds. Unfortunately, the computation of them is extremely resource consuming. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013